

Velocities with KDP and DS on the common terrain were higher in the Sprint (KDP +12%, DS +23%) due to faster cycle rates (KDP +8%, DS +11%) and longer cycle lengths (KDP +5%, DS +10%), while the DP velocity was higher (+8%) with faster cycle rate (+16%) despite a shorter cycle length (-9%). Over a 1.0-km section of track common to both Sprint and Distance events, the mean race velocity, cyclical sub-technique velocities, and cycle rates were higher during the Sprint race, while Tuck and Turn velocities were similar. The relative use of double pole (DP), kick-double pole (KDP), diagonal stride (DS), tucking (Tuck) and turning (Turn) sub-techniques, plus each technique’s respective velocities, cycle lengths and cycle rates were monitored using a single micro-sensor unit worn by each skier during the Sprint qualification, semi-final and finals, and multiple laps of the Distance race. We compare the macro-kinematics of six elite female cross-country skiers competing in 1.1-km Sprint and 10.5-km Distance classical technique events on consecutive days under similar weather and track conditions.
